-
11 January 2013
История
- Автор: Aleexandra
Медиана,проведенная к боковой стороне равнобедренного треугольника равна 30 см.Она с основанием составляет угол 30 градусов.Найдите высоту,опущенную на основание.
-
-
-
11 January 2013
- Ответ оставил: lorddryan
Пусть медиана исходит из вершины А к стороне ВС. Воспользуемся следующим свойством медианы: точка, в которой пересекаются все медианы - центроид - делит каждую из них в соотношении 2:1, считая с вершины. Таким образом, получаем длину отрезка АМ, где М - точка пересечения, АМ = 20 см.
Высота ВЕ, которую необходимо найти в задаче, образует прямой угол с основанием, поэтому в треугольнике АМЕ находим сторону АЕ, АЕ = 10√3. основание АС равно 2*АЕ и составляет АС = 20√3.
Теперь, с помощью данной в условии медианы и найденного основания можно найти половину стороны ВС (медиана делит сторону пополам). Это можно сделать с помощью теоремы косинусов, таким образом, DC = 10√3, а ВС = 2*DC = 20√3.
Основание равно боковой стороне, значит треугольник не просто равнобедренный, но равносторонний. Длину высоты можно найти, опять применив теорему косинусов, зная, что все углы в равностороннем треугольнике равны 60°, но также в подобном треугольнике все медианы равны. Высота, опущенная на основание, таким образом, будет составлять 30 см.
-
-
- НЕ НАШЛИ ОТВЕТ?
Если вас не устраивает ответ или его нет, то попробуйте воспользоваться поиском на сайте и найти похожие ответы по предмету школьной программы: история.
На сегодняшний день (18.09.2025) наш сайт содержит 373724 вопросов, по теме: история. Возможно среди них вы найдете подходящий ответ на свой вопрос. -
Нажимая на кнопку "Ответить на вопрос", я даю согласие на обработку персональных данных
Ответить на вопрос