-
05 April 2012
Другие предметы
- Автор: Иэясу96
Треугольник АВС вписан в окружность радиусом кв. корень из 2. Его вершины делят окружность на три части в отношении 1:2:3. Найдите сторону правильного треугольника, площадь которого ровна площади треугольника АВС
-
-
-
05 April 2012
- Ответ оставил: Michael130301
если вершины треуг делят окружность в отношении 1:2:3, то пусть дуга ВА=х, СВ=2х, АС=3х, х+2х+3х=360
6х=360
х=60
тогда угол С==30, А=60, В=90( свойство вписанного угла=половине дуги, на которую опирается), значит треуг. прямоуг., центр описанной окружности лежит в середине гипотенузы, по условиюR=sqrt(2), значит АС=2*sqrt(2), AB=sqrt(2)(против угла в 30 гр.)S тр.АВС=2*sqrt(2)*sqrt(2)*sin 60/2=sqrt(3)
S равностор.треуг.=a^2*sqrt(3)/4(формула)
a^2*sqrt(3)/4=sqrt(3)
a^2=4
a=2
-
-
- НЕ НАШЛИ ОТВЕТ?
Если вас не устраивает ответ или его нет, то попробуйте воспользоваться поиском на сайте и найти похожие ответы по предмету школьной программы: другие предметы.
На сегодняшний день (05.04.2025) наш сайт содержит 140759 вопросов, по теме: другие предметы. Возможно среди них вы найдете подходящий ответ на свой вопрос. -
Нажимая на кнопку "Ответить на вопрос", я даю согласие на обработку персональных данных
Ответить на вопрос