-
27 December 2020
Геометрия
- Автор: smittyy
СРОЧНО!!! Около конуса с образующей равной 7√2 описана сфера. Сфера содержит вершину конуса и его основание. Центр основания конуса и центр сферы совпадают. Найдите радиус сферы.
-
-
-
27 December 2020
- Ответ оставил: baganaly
Объяснение:
радиус сферы описанного около конуса равен радиусу конуса. так как центр основания конуса и центр сферы совпадают Rc=rк
радиус сферы описанного около конуса равен высоте конуса Rс=rк=Hк.
высота конуса перпендикулярно к основанию конуса.
при осевом сечении конуса выходит фигура равнобедренный прямоугольный треугольник.
где образующая L конуса катеты, а основание гипотенуза равное диаметру Dк конуса. По теореме Пифагора. а²+в²=с²
находим гипотенузу равную диаметру D=2R
Dк=√L²+L²
Dк=√(7√2)²+(7√2)²=√49×2+49×2=√98+98=√196=14
Dк=Dс=14
радиус сферы
Rc=Dc/2=14/2=7
-
-
- НЕ НАШЛИ ОТВЕТ?
Если вас не устраивает ответ или его нет, то попробуйте воспользоваться поиском на сайте и найти похожие ответы по предмету школьной программы: геометрия.
На сегодняшний день (24.09.2025) наш сайт содержит 161594 вопросов, по теме: геометрия. Возможно среди них вы найдете подходящий ответ на свой вопрос. -
Нажимая на кнопку "Ответить на вопрос", я даю согласие на обработку персональных данных
Ответить на вопрос
Последние опубликованные вопросы
Найдите углы прямоугольной трапеции, если одна из её углов равен 20°
Сторона треугольника равна 24 см а радиус описанной окружности 8√3 Чему равен угол треугольника противолежащий данной стороне
У прямокутному трикутнику бісектриса найбільшого кута утворює з гіпотенузою кути, один із яких на 20 deg більший за другий.
Знайдіть гострі кути трикутника.
У прямокутному трикутнику бісектриса найбільшого кута утворює з гіпотенузою кути, один із яких на 20 deg більший за другий.
Знайдіть гострі кути трикутника.
У прямокутному трикутнику бісектриса найбільшого кута утворює з гіпотенузою кути, один із яких на 20 deg більший за другий.
Знайдіть гострі кути трикутника.
У прямокутному трикутнику бісектриса найбільшого кута утворює з гіпотенузою кути, один із яких на 20 deg більший за другий.
Знайдіть гострі кути трикутника.
У прямокутному трикутнику бісектриса найбільшого кута утворює з гіпотенузою кути, один із яких на 20 deg більший за другий.
Знайдіть гострі кути трикутника.
У прямокутному трикутнику бісектриса найбільшого кута утворює з гіпотенузою кути, один із яких на 20 deg більший за другий.
Знайдіть гострі кути трикутника.
У прямокутному трикутнику бісектриса найбільшого кута утворює з гіпотенузою кути, один із яких на 20 deg більший за другий.
Знайдіть гострі кути трикутника.
У прямокутному трикутнику бісектриса найбільшого кута утворює з гіпотенузою кути, один із яких на 20 deg більший за другий.
Знайдіть гострі кути трикутника.
У прямокутному трикутнику бісектриса найбільшого кута утворює з гіпотенузою кути, один із яких на 20 deg більший за другий.
Знайдіть гострі кути трикутника.
У прямокутному трикутнику бісектриса найбільшого кута утворює з гіпотенузою кути, один із яких на 20 deg більший за другий.
Знайдіть гострі кути трикутника.