-
13 February 2021
Математика
- Автор: Simba2017
При каких значениях параметра a уравнение имеет единственное решение?
25^{x} -(8a+5)5^{x} +16a^2+20a-14=0-
-
-
13 February 2021
- Ответ оставил: oganesbagoyan
При каких значениях параметра a уравнение
(5ˣ)² - (8a+5)*5ˣ +16a² +20a -14 =0 имеет единственное решение
Решение : (5ˣ)² - (8a+5)*5ˣ +16a² +20a -14 =0
квадратное уравнение относительно t = 5ˣ >0
t² - (8a+5)t +16a² +20a +14 =0
D = (8a+5)² - 4(16a² +20a -14 )=64a² +80a +25 -64a² -80a+56 =81 =9² >0
т.е. это уравнение всегда имеет 2 решения
Но если свободный член будет отрицательно , то корни будут разных знаков и исходное уравнение будет иметь одно решение
16a² +20a - 14 =16(a +7/4)(a - 1/2) < 0 ⇒ a ∈( -7/4 ; 1/2 )
НО ЕСЛИ 16a² +20a - 14 =0 , т.е. a = -7/4 или a = 1/2
получается
5ˣ (5ˣ - 8a - 5) = 0 ⇒ 5ˣ = 0 или 5ˣ = 8a + 5
5ˣ = 0 не имеет решение 5ˣ = 8a + 5 имеет решение если
a > - 5 / 8 || a = 1/2 удовлетворяет ||
следовательно
Ответ: a ∈( -7/4 ; 1/2 ]
5ˣ = (8a+5 -9)/2 = 4a -2
5ˣ = (8a+5 +9)/2 = 4a +7
-
-
- НЕ НАШЛИ ОТВЕТ?
Если вас не устраивает ответ или его нет, то попробуйте воспользоваться поиском на сайте и найти похожие ответы по предмету школьной программы: математика.
На сегодняшний день (28.09.2025) наш сайт содержит 1049515 вопросов, по теме: математика. Возможно среди них вы найдете подходящий ответ на свой вопрос. -
Нажимая на кнопку "Ответить на вопрос", я даю согласие на обработку персональных данных
Ответить на вопрос