-
21 May 2011
Другие предметы
- Автор: Eelinaa
Сторона основания правильной треугольной пирамиды равна 6 см, а высота - корень из 13
Найдите площадь боковой поверхности пирамиды
-
-
-
21 May 2011
- Ответ оставил: Lyutikova22
Решение: Вершина пирамиды проецируется в центр правильного треугольника.
Пусть ABCS –данная пирамида с основанием АВС и вершиной S, O - центр правильного треугольника.
Пусть М –точка касания вписанной в основание окружности и стороны АВ треугольника АВС.
Радиус вписанной в правильный треугольник окружности можно найти за формулой:
r=а*корень(3)\6, где а – сторона правильного треугольника.
Радиус вписанной окружности равен
r=ОМ=6*корень(3)\6=корень(3) см.
Высота грани ABS равна по теореме Пифагора:
SM=корень(SO^2+OM^2)= корень((корень(13))^2+(корень(3))^2)=4
Площадь грани ABS (как треугольника) равна 1\2*AB*SM=1\2*6*4=12 см^2.
Грани правильной треугольной пирамиды равны, их три, площадь боковой поверхности равна сумме боковых граней, поэтому площадь боковой поверхности равна
3*12=36 см^2.
Ответ: 36 см^2
-
-
- НЕ НАШЛИ ОТВЕТ?
Если вас не устраивает ответ или его нет, то попробуйте воспользоваться поиском на сайте и найти похожие ответы по предмету школьной программы: другие предметы.
На сегодняшний день (05.07.2025) наш сайт содержит 140759 вопросов, по теме: другие предметы. Возможно среди них вы найдете подходящий ответ на свой вопрос. -
Нажимая на кнопку "Ответить на вопрос", я даю согласие на обработку персональных данных
Ответить на вопрос