-
14 April 2013
Другие предметы
- Автор: Wolfart
радиус вписанной в прямоугольник треугольник окружности равен 2см,сумма катетов ровна 17см. Найти периметр и площадь треугольника.
-
-
-
14 April 2013
- Ответ оставил: Na2005stud
Радиус вписанной в прямоугольный треугольник окружности находят по формуле:
r=(а+b-c):2,где а, в - катеты, с - гипотенуза треугольника
Радиус и сумма катетов даны в условии задачи.
2=(а+b-c):2
4= 17-c
с=17-4
с=13 см - это длина гипотенузы.
Периметр равен 13+17=30 см
Можно заметить, что стороны этого треугольника из Пифагоровых троек, и они равны 5, 12,13. , т.к. их сумма 17.
При желании каждый сможет в этом убедиться, применив теорему Пифагора.
Площадь треугольника
S=12*5:2=30 cм²Не все и не всегда мы помним о пифагоровых тройках.
Когда известен периметр многоугольника и радиус вписанной в него окружности, площадь можно найти иначе - умножив половину периметра на радиус вписанной окружности, что в итоге даст тот же результат:
S= 30:2*2=30 см² -
-
- НЕ НАШЛИ ОТВЕТ?
Если вас не устраивает ответ или его нет, то попробуйте воспользоваться поиском на сайте и найти похожие ответы по предмету школьной программы: другие предметы.
На сегодняшний день (01.11.2025) наш сайт содержит 140759 вопросов, по теме: другие предметы. Возможно среди них вы найдете подходящий ответ на свой вопрос. -
Нажимая на кнопку "Ответить на вопрос", я даю согласие на обработку персональных данных
Ответить на вопрос
